wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If sinx+siny+sinz=0=cosx+cosy+cosz, then find the value of expression cos(yx)+cos(zy)+cos(xz).

Open in App
Solution

Given, sinx+siny+sinz=0 and cosx+cosy+cosz=0

sinx+siny=sinz and cosx+cosy=cosz

(sinx+siny)2=sin2z and (cosx+cosy)2=cos2z

Now, (sinx+siny)2+(cosx+cosy)2=sin2z+cos2z

sin2x+sin2y+2sinxsiny+cos2x+cos2y+2cosxcosy=1 ...... [sin²θ+cos²θ=1]

1+1+2(sinxsiny+cosxcosy)

1+1+2cos(xy)=1 .................cos(ab)=cosacosb+sinasinb

cos(xy)=12
Similarly cos(yz)=12 and cos(zx)=12

cos(xy)+cos(yz)+cos(zx)=32

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Basic Inverse Trigonometric Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon