If √1−sinA1+sinA+sinAcosA=1cosA, for all permissible values of A, then A belongs to
√1−sinA1+sinA+sinAcosA=1cosA
Hence
|1−sinAcosA|=1−sinAcosA.
Now
−1≤sinA≤1
Or
0≤1−sinA≤2.
Hence
|1−sinA|=1−sinA.
Hence we get
(1−sinA)(1|cosA|−1cosA)=0
Or
sinA=1 and A=π2 or
|cosA|=cosA. This implies Aϵ[−π2,π2].
Hence Ist and IVth quadrant.