If 25∑i=1a1=625 such that a1,a2,a3⋯ϵ A.P. then 13∑j=1a2j−1 equals
A
25
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
15625
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
325
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
125
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is C325 Given 25∑i=1ai=a1+a2+a3+....+a25=252(a1+a25) ⇒625=252(a1+a25) ∴a1+a25=50 Now 2(a1+a2+...+a12)+a13=625 2×6×50+a13=625 a13=25 ∴13∑j=1a2j−1=a1+a3+a5+...+a25 =6(a1+a25)+a13 =6×50+25=325