Given: 5∑n=15∑m=1tan−1mn=kπ
on expanding
L.H.S.=(tan−111+tan−112+⋯+tan−115)+(tan−121+tan−122+⋯+tan−125) ⋮+(tan−151+tan−152+⋯+tan−155)
=(tan−111+tan−122+⋯+tan−155)+(tan−112+tan−121+tan−113+tan−131⋯+tan−115+tan−151)+(tan−123+tan−132+tan−124+tan−142+tan−125+tan−152)+(tan−134+tan−143+tan−135+tan−153)+(tan−145+tan−154)
(∵tan−1x+tan−11x=π2; x>0)
=5×π4+10×π2
=25π4
∴[k]=[254]=6
Alternate solution :
Let f(x)=5∑n=15∑m=1tan−1mn=kπ
and g(x)=5∑n=15∑m=1tan−1nm=kπ
(where x=mn)
Adding both, f(x)+g(x)=2kπ
⇒5∑n=15∑m=1(tan−1mn+tan−1nm)=2kπ ⋯(1)
∵mn>0⇒tan−1mn=cot−1nm
So, equation (1) becomes,
5∑n=15∑m=1π2=2kπ
⇒25×π2=2kπ
⇒k=254
∴[k]=[254]=6