The correct option is C 34[1−(13)n]
n∑r=1Tr=3n−1
⇒Tr=(3r−1)−(3r−1−1) =3r−1(3−1)=2(3r−1)
⇒1T=12×(13)r−1
⇒n∑r=11Tr=12n∑r=1(13)r−1
=12(1−(13)n)1−13
∴n∑r=11Tr=34(1−(13)n)
Alternate method :
Putting n=1,
T1=31−1=2⇒1T1=12
Now, putting n=1 in the given options,
43(1−31)=−83
32[1−(13)1]=1
34[1−(13)1]=12
43[1−(13)1]=89
So, the correct choice is 34[1−(13)n]