The correct option is A tan−1(n2+nn2+n+2)
Consider, tan−1(2mm4+m2+2)
=tan−1(2m1+(m4+2m2−m2+1))
=tan−1(2m1+(m2+1)2−m2)
=tan−1(2m1+(m2+1+m)(m2+1−m))
=tan−1(m2+1+m)−tan−1(m2−m+1)
Now, ∑nm=1tan−1(2mm4+m2+2)=tan−1(3)−tan−1(1)+tan−1(7)−tan−1(3)+......tan−1(n2+1+n)−tan−1(n2−n+1)
=tan−1(n2+n+1)−tan−1(1)
=tan−1(n2+nn2+n+2)