If 2013∑n=1tan(θ2n)sec(θ2n−1)=tan(θ2a)−tan(θ2b) then (b+a) equals
For a positive integer n, let fn(θ)=(tanθ2)(1+sec θ)(1+sec 2θ)(1+sec 4θ)......(1+sec 2nθ). Then