wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If n=12cot1(n2+n+42)=kπ then find the value of k.

Open in App
Solution


n=12cot1(n2+n+42)=kπ.......eq(1)

cot1(n2+n+42)

We can rewrite above equation as.

=cot1(1+n+12×n2n+12n2)


=cot1(n+12)cot1(n2)......eq(2) cot1acot1b=cot1(1+abab)

Here a=n+12 and b=n2

Put eq(2) in eq(1)
2n=1cot1(n+12)cot1(n2)=kπ.....eq(3)
for n=0
=cot1(12)cot1(0)......eq(4)

for n=1
=cot1(22)cot1(12)......eq(5)

for n=3
=cot1(32)cot1(22)......eq(6)
.
.
.
.
.
.
.
.
For n=

=cot1(2)cot1(12)......eq(7)

Hence on adding eq(4) to eq(7) we get

2n=1cot1(n+12)cot1(n2)=2(cot1(0)+cot1())

2(cot1(0)+cot1())=kπ

=2(π2+0)=kπ

kπ=π

Hence
k=1

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Basic Inverse Trigonometric Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon