We know, tan−1(x)−tan−1(y)=tan−1(x−y1+xy)
Now, tan−1(2k2+k2+k4)
=tan−1(2k1+(k4+1+2k2−k2))
=tan−1(2k1+(k2+1)2−k2)
=tan−1((k2+1+k)−(k2+1−k)1+(k2+1+k)(k2+1−k))
Hence, k∑k=1tan−1(2k2+k2+k4)
=k∑k=1tan−1(k2+1+k)−tan−1(k2+1−k)
Putting the values of k, we get
tan−1(3)−tan−1(1)+tan−1(7)−tan−1(3)+... +tan−1(n2+n+1)−tan−1(n2−n+1)=tan−1(67)
⇒tan−1(n2+n+1)−tan−1(1)=tan−1(67)
⇒tan−1(n2+n+1)=tan−1(1)+tan−1(67)
⇒tan−1(n2+n+1)=tan−1⎛⎜
⎜
⎜⎝1+671−67×1⎞⎟
⎟
⎟⎠
⇒tan−1(n2+n+1)=tan−1(13)
⇒n2+n+1=13
⇒n2+n−12=0
⇒(n−3)(n+4)=0
⇒n=3 or n=−4
As n cannot be negative, so n=3