wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If nk=1tan1(2k2+k2+k4)=tan1(67), then the value of n is equal to

Open in App
Solution

We know, tan1(x)tan1(y)=tan1(xy1+xy)
Now, tan1(2k2+k2+k4)
=tan1(2k1+(k4+1+2k2k2))
=tan1(2k1+(k2+1)2k2)
=tan1((k2+1+k)(k2+1k)1+(k2+1+k)(k2+1k))
Hence, kk=1tan1(2k2+k2+k4)
=kk=1tan1(k2+1+k)tan1(k2+1k)

Putting the values of k, we get
tan1(3)tan1(1)+tan1(7)tan1(3)+... +tan1(n2+n+1)tan1(n2n+1)=tan1(67)
tan1(n2+n+1)tan1(1)=tan1(67)
tan1(n2+n+1)=tan1(1)+tan1(67)
tan1(n2+n+1)=tan1⎜ ⎜ ⎜1+67167×1⎟ ⎟ ⎟
tan1(n2+n+1)=tan1(13)
n2+n+1=13
n2+n12=0
(n3)(n+4)=0
n=3 or n=4
As n cannot be negative, so n=3

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon