The correct option is C 0
Let, Sn=n∑r=1ar=n∑k=1k∑j=1j∑i=12
⇒Sn=2n∑k=1k∑j=1j=n∑k=1k(k+1)
⇒Sn=n∑k=1k2+n∑k=1k=n(n+1)(2n+1)6+n(n+1)2
⇒Sn=n(n+1)(n+2)3
We know that, ar=Sn−Sn−1
Therefore, ar=13{r(r+1)(r+2)−(r−1)r(r+1)}=r(r+1)
⇒1ar=1r(r+1)=1r−1r+1
⇒n∑r=11ar=1−1n+1=nn+1
Since, nn+1<1
Therefore, limm→∞(n∑r=11ar)m=limm→∞(nn+1)m=0
Ans: A