The correct option is D 25
tr=(r4+r)+(r2−r+1)(r4+r)=1+r2−r+1r(r+1)(r2−r+1)=1+1r(r+1)=1+(1r−1r+1)
Thus, the terms are:
r=1:1+(11−12)
r=2:1+(12−13)
r=3:1+(13−14)
...
r=n:1+(1n−1n+1)
Hence, the sum: S=n+(11−1n+1)=n(n+2)n+1
Thus: n(n+2)n+1=67526=>n=25
Hence, (c) is correct.