∑∑0≤i<j≤nj nCi=n−1∑r=0nCr[(r+1)+(r+2)+⋯+(n)]=n−1∑r=0nCr(n+12(n−r)+r(n−r)2)
=(n+1)2n−1∑r=0(n−r). nCr+12n−1∑r=0nCr. r(n−r)
=(n+1)2n−1∑r=0(n−r)n(n−1)!(n−r)(n−r−1)! r! +12n−1∑r=0r(n−r)n(n−1)(n−2)!(n−r)(n−r−1)! r(r−1)!
=n(n+1)2n−1∑r=0n−1Cr+n(n−1)2n−1∑r=1n−2Cr−1=n(n+1)22n−1+n(n−1)22n−2=n2n−3(2n+2+n−1)=n(3n+1)2n−3
⇒n(3n+1)2n−3=320⇒n(3n+1)2n−3=5(16)22⇒n=5