wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If tan1x1x2+tan1x+1x+2=π4, then find the value of x.

Open in App
Solution

tan1x1x2+tan1x+1x+2=π4 ...Given

tan1⎢ ⎢ ⎢ ⎢x1x2+x+1x+21(x1x2)(x+1x+2)⎥ ⎥ ⎥ ⎥=π4

tan1[(x1)(x+2)+(x+1)(x2)(x+2)(x2)(x1)(x+1)]=π4

tan1[x2+x2+x2x2x24x2+1]=π4

tan1[2x243]=π4

tan[tan142x23]=tanπ4

42x23=1

42x2=3
2x2=43=1
x=±12

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Basic Inverse Trigonometric Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon