If tan−1(√a+x−√b−x√b+x+√a−x)=πc−1dcos−1x, −1√2≤x≤1. Find the value of a,b,c and d
Let a=b=k and x=kcos2θ
Hence
tan−1(√a+x−√b−x√b+x+√a−x)
=tan−1(√k+kcos2θ−√k−kcos2θ√k+kcos2θ+√k−kcos2θ)
=tan−1(√kcos2θ−√ksin2θ√kcos2θ+√ksin2θ)
=tan−1(cosθ−sinθcosθ+sinθ)
=tan−1(1−sinθcosθ1+sinθcosθ)
=tan−1(1−tanθ1+tanθ)
=tan−1(tan(π4−θ))
=π4−θ
Now
x=kcos2θ
Hence
θ=12cos−1(xk)
Therefore
π4−θ=π4−12cos−1(xk)
=π4−12cos−1(xk)
=πc−1dcos−1(x)
Hence by comparison we get
c=4,d=2,k=1
Since a=b=k.
Hence a=b=1.
Therefore (a,b,c,d)=(1,1,4,2).