If tan−1{xa+√a2−x2}=1psin−1xa, −a<x<a. find the value of p.
A
p=−1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
p=+1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
p=+2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
p=−2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Bp=+2 Let x=asinθ, Given −a<x<a. Then, −a<asinθ<a or −1<sinθ<1 ⇒θϵ(−π2,π2) ∴tan−1{xa+√a2−x2}=tan−1{asinθa+√a2−a2sin2θ} =tan−1{sinθ1+cosθ}