If tanα=17,sinβ=1√10,then the value of α+2β
sinβ=1√10
Therefore cosβ=√10−1√10=3√10
Hence tanβ=sinβcosβ=13 ...(i)
tan2β=2tanβ1−tan2β
Substituting the value of tanβ from (i) we get
tan2β=34 ...(ii)
tanα=17 ...(iii)
Now
tan(α+2β)=tanα+tan2β1−tanα+tan2β
Substituting the value of tanα and
tan2β from iii and ii and by simplifying we get
tan(α+2β)=4+2128−3=1
tan(α+2β)=1
α+2β=450
Hence answer is C