If tanα=mm−1 , tanβ=12m−1, then α−β=
tan(α−β)=tanα−tanβ1+tanαtanβ =mm−1−12m−11+m(m−1)(2m−1) Given tanα=mm−1,tanβ=12m−1 =2m2−m−m+12m2−m−2m+1+m tan(α−β)=2m2−2m+12m2−2m+1=1 ⇒α−β=π4
If tanα = mm+1 and tanβ = 12m+1, then α + β =
[IIT 1978; EAMCET 1992; Roorkee 1998; JMI EEE 2001]