If tanB=2sinAsinCsin(A+C) then tanA,tanB,tanC are in
A
A.P
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
G,P
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
H.P
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
AGP
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is B H.P tanB=2sinAsinCsin(A+C)⇒sinBcosB=2sinAsinCsinAcosC+cosAsinC⇒sinAsinBcosC+cosAsinBsinC=2sinAcosBsinC Dividing both sides by sinAsinBsinC, we get sinAsinBcosCsinAsinBsinC+cosAsinBsinCsinAsinBsinC=2sinAcosBsinCsinAsinBsinC⇒cosCsinC+cosAsinA=2cosBsinB⇒1tanC+1tanA=2tanB Hence tanA,tanB,tanC are in H.P