wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If tanβ=tanα+tanβ1+tanαtanβ, then sincβ=sin2α+sin2γ1+sin2αsin2γ Find c.

Open in App
Solution

tanβ=sinαcosα+sinγcosγ1+sinαcosαsinγcosγ=sin(α+γ)cos(αγ)
sin2β=2tanβ1+tan2β=2sin(α+γ)cos(αγ)1+sin2(α+γ)cos2(αγ)
=2sin(α+γ)cos(αγ)cos2(αγ)+sin2(α+γ)
=sin2α+sin2γ1+cos2(αγ)2+1cos2(α+γ)2
=sin2α+sin2γ1+12×2sin2αsinγ=sin2α+sin2γ1+sin2αsin2γ
Ans: c = 2

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon