wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If tanθ2=aba+btanφ2, then prove that cosα=acosφ+ba+bcosφ

Open in App
Solution

Given, tanθ2=aba+btanφ2
Now, cosθ=1tan2θ21tan2θ2=1aba+btan2φ1+aba+btan2φ
=1aba+bsin2φ2cos2φ21+aba+bsin2φ2cos2φ2
=(a+b)cos2φ(ab)sin2φ(a+b)cos2φ+(ab)sin2φ
=a(cos2φ2sin2φ2)+b(cos2φ2+sin2φ2)a(cos2φ2+sin2φ2)+b(cos2φ2sin2φ2)
=acosφ+ba+bcosφ
Ans: 4

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Ratios of Complementary Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon