wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If tan(A+B)=3tanA,then show that sin(2A+B)=2sinB and sin2(A+B)+sin2A=2sin2B.

Open in App
Solution

tan(A+B)=3tanAsin(A+B)cos(A+B)=3sinAcosA
sin(A+B)cosA=3sinAcos(A+B) ...(1)
sin(A+B)cosAsinAcos(A+B)=2sinAcos(A+B)sinB=sin(A+A+B)+sin(AAB)sinB=sin(2A+B)sinB
sin(2A+B)=2sinB ...(2)
Now
sin2(A+B)+sin2A=2sin(2A+2B+2A2)cos(2A+2B2A2)=2sin(2A+B)cosB=4sinBcosB=2sin2B

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
General Solutions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon