tan(A+B)=3tanA⇒sin(A+B)cos(A+B)=3sinAcosA
⇒sin(A+B)cosA=3sinAcos(A+B) ...(1)
⇒sin(A+B)cosA−sinAcos(A+B)=2sinAcos(A+B)⇒sinB=sin(A+A+B)+sin(A−A−B)⇒sinB=sin(2A+B)−sinB
⇒sin(2A+B)=2sinB ...(2)
Now
sin2(A+B)+sin2A=2sin(2A+2B+2A2)cos(2A+2B−2A2)=2sin(2A+B)cosB=4sinBcosB=2sin2B