If tanθ=43
then
by using trigonometric ratio form , we get
sinθ=45
put the value of
we get∴√1−sinθ1+sinθ= ⎷1−451+45=√19=13
Prove the following
1.(1−sin2A)sec2A=1
2.sec4θ−sec2θ=tan4θ+tan2
3.(secθ−tanθ)2=1−sinθ1+sinθ
4.tanθ+secθ−1tanθ−secθ+=1+sinθcosθ