If tanθ=56 and tanϕ=111, then θ+ϕ is ___
The correct option is B 45∘
We know that tan(A+B)=tanA+tanB1−tanAtanB
Now, tan(θ+ϕ)=tanθ+tanϕ1−tanθtanϕ
=56+1111−56×111
=55+666−5
=6161
=1
⇒tan(θ+ϕ)=1
We know that tan45∘=1
∴tan(θ+ϕ)=tan45∘
⇒θ+ϕ=45∘