wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If tanθ=mn, and sin θ=KL, then find the value of L2K2L2n2×(m2+n2)

Open in App
Solution

Let P=mα and B=nα
tanθ=PB=mn
H2=P2+B2 ........ [By Pythagoras theorem]
H2=m2α2+n2α2
H=αm2+n2
sinθ=PH=mααm2+n2
sinθ=mm2+n2 ....... (1)
Consider, L2K2L2n2×(m2+n2)
=1K2L2n2×(m2+n2)

=(1(sinθ)2)n2×(m2+n2)

=1m2m2+n2n2×(m2+n2)
=n2(m2+n2)(m2+n2)n2=1
Hence, the answer is 1.

482101_327988_ans_e65a667dae1a4eacbf90530fd9f9efd1.png

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Ratios of Allied Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon