If θ is the angle between the line
→r=2i+j−k+(i+j+k)t and the plane
→r⋅(3i−4j+5k)=q, then
θ is angle b/w →γ=2^i+j+k+(i+j+k)t and →.(3^i−4^j+5k)=q
Angle b/w line and plane is given by
sinθ=41a2+b1b2+c1c2√a21+b21+c21√a22+b22+c22
Where (a1,b1,c1) and (a2,b2,c2) are direction ratios of line and plane Respectively so here
a1,b1,c1)=(1,1,1) and (a2,b2,c2)=(3,−4,5)
So sinθ=3−4+5√1+1+1√9+16+25
4√3√50=4√35√2=4√6.5×√6√6=2√65.3=2√615
so here sinθ=2√615⇒θ=sin2√615