un=∫π201−cos2nx1−cos2xdxun+un+2−2un+1=∫π20(1−cos2nx)+(1−cos(2n+4)x)−2(1−cos(2n+2)x)1−cos2xdx=∫π20−2cos(2n+2)xcos2x+2cos(2n+2)x1−cos2xdx=∫π202cos(2n+2)xdx=2[sin(2n+2)x2n+2]π20=0∴un+un+2−2un+1=0Δ=∣∣
∣∣u1u2u3u4u5u6u7u8u9∣∣
∣∣applying C1→ C1+C3−2C2Δ=∣∣
∣∣u1+u3−2u2u2u3u4+u6−2u5u5u6u7+u9−2u8u8u9∣∣
∣∣=∣∣
∣∣0u2u30u5u60u8u9∣∣
∣∣=0