If 2x=t, then Nr=t6−t5−t4+t2+t−1
=t5(t−1)−t2(t2−1)+(t−1)
=(t−1)[t5−t2(t+1)+1]
=(t−1)(t5−t3−t2+1)
=(t−1)(t3−1)(t2−1)
=(2x−1)(23x−1)(22x−1)
Rationalizing, we have to evaluate Ltx→02x−1x.22x−12x.23x−13x.6.x3(√15+cosx+4)(cosx−1)sinx
=log2.log2.log2.6.x3(√15+cosx+4)−2sin2(x/2).sinx
=−6(log2)3.x22sin2(x/2).xsinx.8
=−6(log2)3.x22(x/2)2.8=−96(log2)3.
Ans: 98