If limx→0asinx−sin2xtan3x is finite then find the value of a
Open in App
Solution
limx→0asinx−sin2xtan3x=limx→0asinx−2sinxcosxtan3x=limx→0sinx(a−2cosx)tan3x =limx→0sinx[a−2(1−x22!+.....)]tan3x=limx→0sinx[(a−2)+x2(1+higher power of x)]tan3x Hence for given limit to exist a−2=0⇒a=2, and corresponding limit is 1.