If limx→af(x)g(x) exists, then does it imply that limx→af(x) and limx→ag(x) also exist? Yes =5 No=7
Open in App
Solution
No. Let us choose f(x)=x,g(x)=1x limx→0f(x)g(x)=limx→01=1. limx→0f(x)=limx→0x=0. Limit exists.But limx→0g(x)=limx→01x. This limit does not exist as R.H.L.=∞,L.H.L.=−∞.