The correct options are
A x1+x3=2x2
B x1+x3=x22
C x2=−2x1x2x1+x2
xlog10(2xx3)+3=2((x+1)−1)(√x+1+1)−(√x+1−1)xlog10(2x4)+3=xlog10(2x4)+3=12x4=10−2x4=1200x=±1(200)1/4,±i(200)1/4x3=−1(200)1/4,x2=0,x1=1(200)1/4(A)x1+x3=2x2−1(200)1/4+1(200)1/4=00=0(B)x1+x3=x22−1(200)1/4+1(200)1/4=02=0(C)x2=−2x1x2(x1+x2)0=−21(200)1/4(0)1(200)1/4+00=0(D)1x1+1x2=1x3(200)−1/4+10=−(200)−1/4∞≠−(200)−1/4