The correct option is C -3 -8
Given,x2−4 is a factor of p(x)=2x3+ax2+bx+12
⇒(x−2)and(x+2) are factors of p(x)=2x3+ax2+bx+12
Therefore, by factor theorem,
p(2)=0,p(−2)=0
⇒16+4a+2b+12=0⇒2a+b=−14 ...(i)
⇒−16+4a−2b+12=0⇒2a−b=2 ...(ii)
On adding (i) and (ii), we get
4a=−12⇒a=−3
From (i),b=−14−2×−3=−8
∴a=−3,b=−8
Option C is correct.