if x=2sint−sin2t,y=2cost−cos2t, then the value of d2ydx2 at t=π2 is
A
2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
−1/2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
−3/4
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
−3/2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A−1/2 Given, x=2sint−sin2t and y=2cost−cos2t
(dxdt)=2cost−2cos2t=[2sin(3t2)sin(t2)] and (dydt)=−2sint+2sin2t=2[sin3t2cost2] Hence (dydx)=cot(t2) and (d2ydx2)=−12csc2(t2)×dtdx Therefore (d2ydx2)=−12csc2(t2)×14sin3t2sint2 And at t=π2 d2ydx2=(−12)=(√2)2×14×(t2)=−12