Formation of a Differential Equation from a General Solution
If x=a ksi...
Question
If x=a(ksint+sinkt),y=a(kcost+coskt), then find d2ydx2 in terms of t.
A
k+14ak1cos3k+12tcosk+12t.
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
k+14ak1cos3k−12tcosk+12t.
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
k+14ak1cos3k+12tcosk−12t.
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
−k+14ak1cos3k+12tcosk−12t.
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Bk+14ak1cos3k+12tcosk−12t. x=a(ksint+sinkt) and y=a(kcost+coskt), Differentiating both equation w.r.t t we get, dxdt=ak(cost+coskt) and dydx=−ak(sint+sinkt), ∴dydx=dydtdxdt=−sint+sinktcost+coskt=−tank+12t ∴d2ydx2=ddx(−tank+12t) =ddt(−tank+12t)dtdx =k+12sec2k+12tak(cost+coskt) =k+14ak1cos3k+12tcosk−12t. [∵cosC+cosD=2cosC+D2cosC−D2]