If xϵ(0,π2), then cos−1(72(1+cos2x)+√(sin2x−48cos2x)sinx)=ax−cos−1(bcosx).Find the value of a+b
Find the value of xϵ(0,π) which satisfies the equation sin x +√3 cos x = √2
If the local maximum of f(x) = sin2x - xϵ(0,π) is at x = a, then find the value of 36 aπ