If x=sin3t√(cos2t),y=cos3t√(cos2t), find dydx at t=π6.
Open in App
Solution
x=sin3t√(cos2t),y=cos3t√(cos2t) ⇒logx=3logsint−12logcos2t,logy=3logcost−12logcos2t Differentiating w.r.t t 1xdxdt=3cott+tan2t,1ydydt=−3tant+tan2t ∴dydx=y(−3tant+tan2t)x(3cott+tan2t) Now at t=π6,−3tant+tan2t=−3√3+√3=0