The correct options are
A only one integral value
B only one irrational value
D two rational values
x(12(log2x)2−14log2x−54)=√2
Taking log to base 2 on both sides,
[12(log2x)2−14log2x−54]log2x=12log22
Put log2x=t, we get
[12t2−14t−54]t=12
⇒2t3−t2−5t−2=0
⇒(t+1)(t−2)(2t+1)=0
⇒t=−1,2,−12
⇒log2x=−1,2,−12
⇒x=2−1,22,2−12
⇒x=12,4,1√2
One integral value: 4
One irrational value: 1√2
Two rational values: 12,4