The correct options are
B x=y−1y+1
C xy+x−y+1=0
D y=1+x1−x
x=secϕ−tanϕ⇒x=1−sinϕcosϕ=1−cos(π2−ϕ)sin(π2−ϕ)⇒x=2sin2(π4−ϕ2)2sin(π4−ϕ2)cos(π4−ϕ2)
⇒x=tan(π4−ϕ2)=1−tanϕ21+tanϕ2 ...(1)
y=cscϕ+cotϕ=1+cosϕsinϕ⇒y=2cos2ϕ22sinϕ2cosϕ2
⇒y=cotϕ2 ...(2)
From (1) & (2)
x=y−1y+1
⇒xy+x−y+1=0
⇒y=x+1x−1
Ans: B,C,D