If x√(1+y)+y√(1+x)=0. then dydx equals -
x√(1+y)+y√(1+x)=0.
⇒x√(1+y)=−y√(1+x).
Squaring both sides, x2(1+y)=y2(1+x)⇒x2−y2+xy(x−y)=0
⇒(x−y)(x+y+xy)=0
Now x≠y [does not satisfy the given equation]
∴x+y+xy=0⇒y=−x1+x
∴dydx=−(1+x)+x(1+x)2=−1(1+x)2
If y=[x2+1x+1], then dydx=?
If y=sin−1(x√1−x+√x√1−x2) then dydx=