If x×a+kx=b where k is a scalar and a,b are any two vectors, then determine x in terms of a,b and k.
A
x=1(a2+k2)[kb−(a×b)+(a.b)ka]
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
x=1(a2+k2)[ka−(a×b)+(a.b)kb]
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
x=1(a2+k2)[ka+(a×b)+(a.b)kb]
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
x=1(a2+k2)[kb+(a×b)+(a.b)ka]
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is Dx=1(a2+k2)[kb+(a×b)+(a.b)ka] x×a+kx=b.....(1) Pre-multiply the given equation vectorially by a
a×(x×a)+k(a×x)=a×b⇒(a.a)x−(a.x)a+k(a×x)=a×b .....(2) Again pre-multiply the given equation scalarly by a
[a×x]+k(a.x)=a.b⇒0+k(a.x)=a.b ......(3) In order to eliminate the scalar (a.x) between (2) and (3),
we multiply (2) by k and (3) by a and add a2kx+k2(a×x)=k(a×b)+(a.b)a a2kx+k2(kx−b)=k(a×b)+(a.b)a ....(4) But from (1), kx−b=−(x×a)=(a×x) Putting the value of a×x in (4),
we get a2kx+k2(kx−b)=k(a×b)+(a.b)a ⇒k(a2+k2)x=k2b+k(a×b)+(a.b)a ∴x=1(a2+k2)[kb+(a×b)+(a.b)ka]