wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If x+y+z=xyz, and x,y,z>0, then find the value of tan1x+tan1y+tan1z

Open in App
Solution


Let x=tanA, y=tanB and z=tanC such that A+B+C=π.
Then
x+y+z
=tanA+tanB+tanC
=(tanA+tanB)+tanC
=tan(A+B)(1tanA.tanB)+tanC
=tan(πC)(1tanA.tanB)+tanC
=tanCtanC(1tanA.tanB)
=tanC(11+tanA.tanB)
=tanA.tanB.tanC
=xyz.
Hence
tan1(x)+tan1(y)+tan1(z)
=tan1(tanA)+tan1(tanB)+tan1(tanC)
=A+B+C
=π ... (as taken).

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Basic Inverse Trigonometric Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon