If xf(x)=3f2(x)+2, then ∫2x2−12xf(x)+f(x)(6f(x)−x)(x2−f(x))2dx equals
A
1x2−f(x)+c
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
1x2+f(x)+c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
1x−f(x)+c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
1x+f(x)+c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A1x2−f(x)+c Given xf(x)=3f2(x)+2 ⇒xf′(x)+f(x)=6f(x)f′(x) ⇒f′(x)=f(x)6f(x)−x ⇒f(x)=f′(x)[6f(x)−x] Now, consider I=∫2x2−12xf(x)+f(x)(6f(x)−x)(x2−f(x))2dx I=∫2x(x−6f(x))+f(x)(6f(x)−x)(x2−f(x))2dx =−∫2x−f′(x)(x2−f(x))2dx Put x2−f(x)=t ⇒2x−f′(x)=dtdx ⇒[2x−f′(x)]dx=dt So, I=−∫dtt2 ⇒I=1t+C I=1x2−f(x)+C