The correct option is C a11−logaz
Given y=a11−logax
Taking logarithm with base a on both sides, we get
logay=11−logax .....(1)
Also given ,z=a11−logay
Taking logarithm with base a on both sides, we get
logaz=11−logay
Put the value from eqn (1),
logaz=11−11−logax
⇒logaz=11−logax−11−logax
⇒logaz=1−logax−logax
⇒−logaxlogaz=1−logax
⇒logax−logaxlogaz=1
Taking logax common in LHS,
⇒logax(1−logaz)=1
⇒logax=11−logaz
Converting to exponential form, we get
x=a11−logaz