Formation of a Differential Equation from a General Solution
If y = e4x ...
Question
If y=e4x+2e−x satisfies the equation y3+Ay1+By=0 then the value of AB is
Open in App
Solution
y1=4e4x−2e−x⇒y2=16e4x+2e−x⇒y3=64e4x−2e−x Putting these values in y3+Ay1+By=0, we have 64e4x−2e−x+A(4e4x−2e−x)+B(e4x+2e−x)=0 (64+4A+B)e4x+(−2−2A+2B)e−x=0 This is true for all x only if 64+4A+B=0 and 2+2A−2B=0. Solving we get A=−13 and B=−12. i.e. AB=156.