If y=f(3x+45x+6) and f′(x)=tanx2 then dydx is equal to
If y=f(3x+45x+6) and f′(x)=tanx2 then dydxis equal to
Differentiating w.r.t. x we get,
∴dydx=f′(3x+45x+6)×3(5x+6)−5(3x+4)(5x+6)2
∴dydx=tan(3x+45x+6)2×−2(5x+6)2