y=13logx+1√(x2−x+1)+1√(3)tan−12x−1√(3)
y=13log(x+1)−16log(x2−x+1)+1√(3)tan−12x−1√(3)
dydx=131x+1−162x−1x2−x+1+1√(3)⋅11+(2x−1)232√3
=162(x2−x+1)−(x+1)(2x−1))x3+1+23⋅33+4x2−4x+1=16−3x+3x3+1+12(x2−x+1)
=121−xx3+1+x+12(x+1)(x2−x+1)=12(x3+1)⋅[1−x+x+1]=1x3+1∴y′(0)=1