The correct option is B (n−1)2yn−2(0)
(1−x2)y2=(sin−1x)2⇒−2xy2+(1−x2)2yy1
=2sin−1x√1−x2=2y
⇒−xy+(1−x2)y1=2⇒(1−x2)y2−2xy1−xy1−y=0⇒(1−x2)y2−3xy1−y=0
Differentiating n times , we obtain
(1−x2)yn+2−(2n+3)xyn+1−(n+1)2yn=0
Putting x=0, we get yn+2(0)=(n+1)2yn(0)