y=(x2+1)sinx
y1=(x2+1)cosx+2xsinx
y2=−(x2+1)sinx+4xcosx+2sinx
⇒y2=−y+4xcosx+2sinx
y3=−y1−4xsinx+6cosx
⇒y3=−(x2+1)cosx−6xsinx+6cosx
y4=−y2−4xcosx−10sinx
⇒y4=(x2+1)sinx−8xcosx−12sinx
⇒y5=(x2+1)cosx+10xsinx−20cosx
⇒y6=−(x2+1)sinx+12xcosx+30sinx
⇒y7=−y1−12xsinx+42cosx
⇒y8=(x2+1)sinx−16xcosx−56sinx
So, we can conclude,
y4n=(x2+1)sinx−2(4n)cosx−(4n)(4n−1)sinx
Put n=5 in above eqn
y20=(x2+1)sinx−40cosx−380sinx
y20(π2)=((π2)2+1)−380
⇒(π2)2−y20(π2)=379