wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If y=(x2+1)sinx then (π2)2y20(π2) is equal to

Open in App
Solution

y=(x2+1)sinx
y1=(x2+1)cosx+2xsinx
y2=(x2+1)sinx+4xcosx+2sinx
y2=y+4xcosx+2sinx
y3=y14xsinx+6cosx
y3=(x2+1)cosx6xsinx+6cosx
y4=y24xcosx10sinx
y4=(x2+1)sinx8xcosx12sinx
y5=(x2+1)cosx+10xsinx20cosx
y6=(x2+1)sinx+12xcosx+30sinx
y7=y112xsinx+42cosx
y8=(x2+1)sinx16xcosx56sinx
So, we can conclude,
y4n=(x2+1)sinx2(4n)cosx(4n)(4n1)sinx
Put n=5 in above eqn
y20=(x2+1)sinx40cosx380sinx
y20(π2)=((π2)2+1)380
(π2)2y20(π2)=379

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 5
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon