The correct option is
B −12(1+x2)ddx(arcsin(1√1+x2))+ddx(arctan(√1+x2−1x))ddx(arcsin(1√1+x2))
ddu(arcsin(u))ddx(1√1+x2)
ddu(arcsin(u)) =1√1−u2
ddx(1√1+x2)
=ddx⎛⎜⎝(1+x2)−12⎞⎟⎠
=ddu⎛⎜⎝u−12⎞⎟⎠ddx(1+x2)
ddu⎛⎜⎝u−12⎞⎟⎠ =−12u−12−1
ddx(1+x2) =ddx(1)+ddx(x2)
ddx(1) =0 , ddx(x2) =2x2−1 =2x
=⎛⎜
⎜
⎜⎝−12u32⎞⎟
⎟
⎟⎠⋅2x
Substitutebacku=1+x2
=⎛⎜
⎜
⎜
⎜⎝−12(1+x2)32⎞⎟
⎟
⎟
⎟⎠⋅2x
=−1⋅2x2(1+x2)32
=−x(1+x2)32
=1√1−u2⎛⎜
⎜
⎜
⎜⎝−x(1+x2)32⎞⎟
⎟
⎟
⎟⎠
Substitutebacku=1√1+x2
=1
⎷1−(1√1+x2)2⎛⎜
⎜
⎜
⎜⎝−x(1+x2)32⎞⎟
⎟
⎟
⎟⎠
=−1
⎷1−(1√1+x2)2⋅x(1+x2)32
=−x(x2+1)32√x2+1x2
=−√x2+1√x2x(x2+1)32
=−x√x2+1√x2(x2+1)32
=−x√x2(1+x2)
ddx(arctan(√1+x2−1x))
=ddu(arctan(u))ddx(√1+x2−1x)
ddu(arctan(u)) =1u2+1
ddx(√1+x2−1x) =−1+√x2+1x2√x2+1
=1u2+1⋅−1+√x2+1x2√x2+1
=1(√1+x2−1x)2+1⋅−1+√x2+1x2√x2+1
=−1+√x2+1(2x2−2√x2+1+2)√x2+1
=−x√x2(1+x2)+−1+√x2+1(2x2−2√x2+1+2)√x2+1
=(−√x2+1+1)√x2+12(x2+1−√x2+1)(x2+1)=−(x2+1)+√1+x22(x2+1−√x2+1)(x2+1)=−12(1+x2)