wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If y=sin111+x2+tan1(1+x21x) then dydx equals (x0)

A
12(1+x2)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
12(1+x2)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
None of these
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is B 12(1+x2)
ddx(arcsin(11+x2))+ddx(arctan(1+x21x))
ddx(arcsin(11+x2))
ddu(arcsin(u))ddx(11+x2)
ddu(arcsin(u)) =11u2
ddx(11+x2)
=ddx(1+x2)12
=dduu12ddx(1+x2)
dduu12 =12u121
ddx(1+x2) =ddx(1)+ddx(x2)
ddx(1) =0 , ddx(x2) =2x21 =2x
=⎜ ⎜ ⎜12u32⎟ ⎟ ⎟2x
Substitutebacku=1+x2
=⎜ ⎜ ⎜ ⎜12(1+x2)32⎟ ⎟ ⎟ ⎟2x
=12x2(1+x2)32
=x(1+x2)32
=11u2⎜ ⎜ ⎜ ⎜x(1+x2)32⎟ ⎟ ⎟ ⎟
Substitutebacku=11+x2
=1 1(11+x2)2⎜ ⎜ ⎜ ⎜x(1+x2)32⎟ ⎟ ⎟ ⎟
=1 1(11+x2)2x(1+x2)32
=x(x2+1)32x2+1x2
=x2+1x2x(x2+1)32
=xx2+1x2(x2+1)32
=xx2(1+x2)
ddx(arctan(1+x21x))
=ddu(arctan(u))ddx(1+x21x)
ddu(arctan(u)) =1u2+1
ddx(1+x21x) =1+x2+1x2x2+1
=1u2+11+x2+1x2x2+1
=1(1+x21x)2+11+x2+1x2x2+1
=1+x2+1(2x22x2+1+2)x2+1
=xx2(1+x2)+1+x2+1(2x22x2+1+2)x2+1
=(x2+1+1)x2+12(x2+1x2+1)(x2+1)=(x2+1)+1+x22(x2+1x2+1)(x2+1)=12(1+x2)

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Transformations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon