wiz-icon
MyQuestionIcon
MyQuestionIcon
5
You visited us 5 times! Enjoying our articles? Unlock Full Access!
Question

If y=1+tanx1tanx then dydx is equal to-

A
121tanx1+tanxsec2(π4+x)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
1tanx1+tanxsec2(π4+x)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
121tanx1+tanxsec(π4+x)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
None of these
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is A 121tanx1+tanxsec2(π4+x)
The given equation is:

y=1+tanx1tanx

Differentiating w.r.t. to x once we get,

dydx=12×1tanx1+tanx×sec2x(1tanx)+sec2x(1+tanx)(1tanx)2

dydx=12×1tanx1+tanx×2sec2xsec2x2tanx

dydx=12×1tanx1+tanx×112sinxcosx

dydx=12×1tanx1+tanx×112(sin2x+cos2x)2.12sinx.12cosx

dydx=12×1tanx1+tanx×1(sinx2+cosx2)2

dydx=12×1tanx1+tanx×1cos2(π4+x)

dydx=12×1tanx1+tanx×sec2(π4+x) .....Answer

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Basic Theorems in Differentiation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon