If y=tan−1(asinx+bcosxacosx−bsinx),−π2<x<π2, batanx<1 then dydx equals
A
1
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
−1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
None of these
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A1 y=tan−1(asinx+bcosxacosx−bsinx) Put a=cosθb=sinθ ⇒y=tan−1(cosθsinx+sinθcosxcosθcos−sinθsinx) ⇒y=tan−1(sin(x+θ)cos(x+θ)) ⇒y=tan−1[tan(x+θ)] ⇒y=x+θ ⇒y=x+tan−1ba (∵tanθ=ba⇒θ=tan−1ba)